Publications

Export 17 results:
Author Title [ Type(Asc)] Year
Filters: Author is Thomas Batard  [Clear All Filters]
Conference Proceedings
Cyriac P, Batard T, Bertalmío M.  2013.  A Variational Method for the Optimization of Tone Mapping Operators. 6th Pacific-Rim Symposium on Image and Video Technology, Guanajuato, Mexico. TM_PSIVT2013.pdf (5.87 MB)
Conference Paper
Ghimpeteanu G, Kane D, Batard T, Levine S, Bertalmío M.  2016.  Local Denoising Based on Curvature Smoothing can Visually Outperform Non-local Methods on Photographs with Actual Noise. IEEE International Conference on Image Processing. DenoisingICIP2016.pdf (1.9 MB)
Ghimpeteanu G, Batard T, Seybold T, Bertalmío M.  2016.  Local denoising applied to RAW images may outperform non-local patch-based methods applied to the camera output. IS&T Electronic Imaging Conference. DenoisingEI2016.pdf (2.09 MB)
Batard T, Bertalmío M.  2013.  Harmonic Flow for Histogram Matching. Geometric Computation for Computer Vision GCCV, Guanajuato, Mexico. GCCV2013.pdf (3.6 MB)
Batard T, Bertalmío M.  2013.  Generalized Gradient on Vector Bundle - Application to Image Denoising. Proceedings of International Conference on Scale Space and Variational Methods in Computer Vision (SSVM-2013), Austria. CameraReady_Paper.pdf (2.04 MB)
Batard T, Bertalmío M.  2015.  Duality Principle for Image Regularization and Perceptual Color Correction Models. Proceedings of International Conference on Scale Space and Variational Methods in Computer Vision (SSVM). CameraReady.pdf (858.33 KB)
Ghimpeteanu G, Batard T, Bertalmío M, Levine S.  2014.  Denoising an Image by Denoising its Components in a Moving Frame. International Conference on Image and Signal Processing (ICISP). *Best Paper Award*. icisp00.pdf (6.88 MB)
Batard T, Maldonado ERamon, Steidl G, Bertalmío M.  2019.  A connection between image processing and artificial neural networks layers through a geometric model of visual perception. Scale Space and Variational Methods in Computer Vision (SSVM2019). geometricModelPerception.pdf (13.46 MB)