Jump to navigation

Home

IP4EC
Image processing
for enhanced cinematography

Contact
Webmap
  • Online office
  • Campus Global

Publications

Export 4 results:
  • BibTex
  • RTF
  • Tagged
  • MARC
  • XML
  • RIS
Author Title Type [ Year(Asc)]
Filters: Author is Gabriela Ghimpeteanu  [Clear All Filters]
2016
Ghimpeteanu G, Batard T, Seybold T, Bertalmío M.  2016.  Local denoising applied to RAW images may outperform non-local patch-based methods applied to the camera output. IS&T Electronic Imaging Conference.
  • Google Scholar
  • BibTex
  • RTF
  • Tagged
  • MARC
  • XML
  • RIS
DenoisingEI2016.pdf (2.09 MB)
Ghimpeteanu G, Kane D, Batard T, Levine S, Bertalmío M.  2016.  Local Denoising Based on Curvature Smoothing can Visually Outperform Non-local Methods on Photographs with Actual Noise. IEEE International Conference on Image Processing.
  • Google Scholar
  • BibTex
  • RTF
  • Tagged
  • MARC
  • XML
  • RIS
DenoisingICIP2016.pdf (1.9 MB)
2015
Ghimpeteanu G, Batard T, Bertalmío M, Levine S.  2015.  A Decomposition Framework for Image Denoising Algorithms. IEEE Transactions on Image Processing.
  • Google Scholar
  • BibTex
  • RTF
  • Tagged
  • MARC
  • XML
  • RIS
DenoisingTIP.pdf (10.26 MB)
2014
Ghimpeteanu G, Batard T, Bertalmío M, Levine S.  2014.  Denoising an Image by Denoising its Components in a Moving Frame. International Conference on Image and Signal Processing (ICISP). *Best Paper Award*.
  • Google Scholar
  • BibTex
  • RTF
  • Tagged
  • MARC
  • XML
  • RIS
icisp00.pdf (6.88 MB)
  • Home
  • People
  • Contact
  • Blog
  • Publications
  • Join Us
© Universitat Pompeu Fabra | Plaça de la Mercè, 10-12. 08002 Barcelona | T. +34 542 20 00
Sitemap | Legal notice    


slitherio unblocked
- io games + agario unblocked

yohoho unblocked
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho
yohoho