Publications

Export 76 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Cyriac P, Bertalmío M, Kane D, Vazquez-Corral J.  2015.  A Tone Mapping Operator Based on Neural and Psychophysical Models of Visual Perception. Proc. SPIE Human Vision and Electronic Imaging XX. ToneMappingSPIE.pdf (3.59 MB)
Cyriac P, Kane D, Bertalmío M.  2015.  Perceptual Dynamic Range for In-Camera Image Processing. British Machine Vision Conference (BMVC). tonemapping_bmvc.pdf (4.59 MB)
Cyriac P, Batard T, Bertalmío M.  2013.  A Variational Method for the Optimization of Tone Mapping Operators. 6th Pacific-Rim Symposium on Image and Video Technology, Guanajuato, Mexico. TM_PSIVT2013.pdf (5.87 MB)
Cyriac P, Kane D, Bertalmío M.  2016.  Automatic, Viewing-condition Dependent Contrast Grading Based on Perceptual Models. Society of Motion Picture & Television Engineers Annual Technical Conference & Exhibition. ToneMapping_smpte16.pdf (739.66 KB)
Cyriac P, Batard T, Bertalmío M.  2014.  A Non Local Variational Formulation for the Improvement of Tone Mapped Images. SIAM Journal on Imaging Sciences (SIIMS). ToneMapping.pdf (4.68 MB)
Cyriac P, Kane D, Bertalmío M.  2016.  Optimized Tone Curve for In-Camera Image Processing. IS&T Electronic Imaging Conference. EI16_tmo.pdf (9.55 MB)
Cardelino J, Caselles V, Bertalmío M, Randall G.  2013.  A Contrario Selection of Optimal Partitions for Image Segmentation. SIAM Journal on Imaging Sciences (SIIMS). SIIMS_final.pdf (2.56 MB)
B
Bertalmío M, Batard T, Kim J.  2016.  Correcting for Induction Phenomena on Displays of Differrent Size. Vision Sciences Society Annual Meeting.
Bertalmío M.  2014.  Image Processing for Cinema. Chapman & Hall/CRC Mathematical and Computational Imaging Sciences Series.
Bertalmío M.  2014.  From Image Processing to Computational Neuroscience: A Neural Model Based on Histogram Equalization. Frontiers in Computational Neuroscience. 8(71)
Bertalmío M, Levine S.  2012.  "Denoising an image by denoising its curvature image", IMA Preprint.
Bertalmío M.  2014.  A model of color constancy and efficient coding can predict lightness induction. Vision Sciences Society Annual Meeting. vss2014.pdf (2.95 MB)
Bertalmío M, Cyriac P, Batard T, Martinez-García M, Malo J.  2017.  The Wilson-Cowan Model Describes Contrast Response and Subjective Distortion. Vision Sciences Society Annual Meeting. VSS_2017_M.pdf (384.41 KB)
Bertalmío M.  2016.  Connections between Retinex, neural models and variational methods. IS&T Electronic Imaging Conference. BertalmioRetinex50_EI2016.pdf (152.17 KB)
Bertalmío M, Levine S.  2013.  A Variational Approach for the Fusion of Exposure Bracketed Pairs. IEEE Transactions on Image Processing. fusionOfExposure.pdf (24.67 MB)
Bertalmío M, Levine S.  2013.  Denoising an Image by Denoising its Curvature Image. SIAM Journal on Imaging Sciences (SIIMS). siimsRR6a.pdf (5.34 MB)
Bertalmío M., Levine S..  2013.  Color matching for stereoscopic cinema. Proceedings of Mirage 2013, 6th International Conference on Computer Vision / Computer Graphics Collaboration Techniques and Applications. Berlin. paper.pdf (7.52 MB)
Batard T, Bertalmío M.  2013.  Harmonic Flow for Histogram Matching. Geometric Computation for Computer Vision GCCV, Guanajuato, Mexico. GCCV2013.pdf (3.6 MB)
Batard T, Bertalmío M.  2018.  A Geometric Model of Brightness Perception and its Application to Color Images Correction. *Accepted* in Journal of Mathematical Imaging and Vision. Manuscript.pdf (2.42 MB)
Batard T, Bertalmío M.  2013.  Generalized Gradient on Vector Bundle - Application to Image Denoising. Proceedings of International Conference on Scale Space and Variational Methods in Computer Vision (SSVM-2013), Austria. CameraReady_Paper.pdf (2.04 MB)
Batard T, Bertalmío M.  2015.  Duality Principle for Image Regularization and Perceptual Color Correction Models. Proceedings of International Conference on Scale Space and Variational Methods in Computer Vision (SSVM). CameraReady.pdf (858.33 KB)
Batard T, Bertalmío M.  2014.  On Covariant Derivatives and Their Applications to Image Regularization. SIAM Journal on Imaging Sciences (SIIMS). SIIMS_Denoising.pdf (4 MB)

Pages